Evidence for a narrow dip structure
at 1.9 GeV/c²in 3π⁺ 3π⁻ diffractive photoproductionE687 collaborationPresented by A. Zallo

Laboratori Nazionali di Frascati INFN

- The E687 Experiment.
- Selection of diffractive events.
- Fitting the data in the $1.6 \div 2.2 \text{ GeV/c}^2$ mass range.
- Other possible structures.
- Conclusions.

The E687 experiment

- The E687 collaboration has collected a large sample of high energy photoproduction events, recorded with the E687 spectrometer during the 1990/91 fixed runs at the wide band photon beam at Fermilab.
- **E687** is a large acceptance multiparticle magnetic spectrometer optimized to study photoproduced charmed mesons.
- Pions are produced from the photon interaction in a 4 cm long Beryllium target.
- E687 is equipped with a very powerful vertex detector, electromagnetic and hadronic calorimeters, Cerenkov and muon detectors.
- A very large sample of events concerning vector meson diffractive photoproduction has become available too.

Selection of $3\pi^+ 3\pi^-$ diffractive events

- Events with identified K \pm or p have been rejected and at least 4 out of the 6 particles are requested to be identified as $\pi \pm$.
- The final states with π^0 are rejected by requiring no visible energy in the electromagnetic calorimeters.
- At our energies the four momentum transfer squared t has been approximated by the total transverse momentum squared P²_T of the hadronic final state diffractively produced, because we don't measure the incoming photon energy, event by event.
- This distribution has been fit by two exponentials : a coherent contribution with a slope $B_1=54$ GeV⁻² and an incoherent one with slope $B_2=5.1$ GeV⁻².
- Taking only events with P²_T ≤ 40 MeV² a contamination from non diffractive events of about 50% has been evaluated. The diffractive mass distribution is obtained subtracting the distribution of the rejected events, properly normalized.

P²_T Distribution

$3\pi^+ 3\pi^-$ Mass Distribution

$3\pi^+ 3\pi^-$ Mass Distribution

(incoherent part taken out)

A three parameter polynomial fit has been performed to explore the hypothesis that the structure is a statistical fluctuation.

The confidence level (CL) of this fit is good everywhere with the exception of the interval centered at 1.9 GeV/c².

Adding a Breit Wigner does not improve the fit :

CL $\sim 10^{-3}$ are obtained.

The p content in the dip region

The p content in the dip region

Unfolding the mass resolution

Because of the narrow width of the dip, the unfolding of the E687 mass resolution ($\sim 10 \text{ MeV}$) has been done.

The experimental distribution b(x) and the unfolded one a(x) are related, in first approximation,

$$a(x) \sim b(x) - 0.5\sigma^2 \cdot b(x)'$$

The fit is used to achieve b(x).

A fit has been performed adding coherently a relativistic Breit-Wigner resonance to a diffractive continuum contribution

The continuum probability distribution $F_{JS}(M)$ has been modeled after a Jacob-Slansky diffractive parameterization

$$F_{JS}(M) = c_0 + c_1 \frac{e^{\frac{-\beta}{M-M_0}}}{(M-M_0)^{2-\alpha}} = f^{2}_{JS}(M)$$

 $f_{JS}(M)$ is assumed to be purely real, square root of the probability function $F_{JS}(M)$

For the fit, a relative phase factor $e^{i\phi}$, independent of mass and a normalizing factor a_r multiplied a relativistic Breit-Wigner resonance term, giving the overall amplitude

$$A(M) = f_{JS}(M) + a_r \frac{-M_r \Gamma e^{i\varphi}}{M_2 - M_r^2 + iM_r \Gamma}$$

Masses and widths are shown in Table 1.

For the narrow resonance at M=1.911 \pm 0.004 GeV/c² we quote a width $\Gamma = 29 \pm 11$ MeV/c²

Table 1

$M_r (GeV/c^2)$	1.911 ± 0.004
Γ (MeV/c ²)	29 ± 11
$a_r/f_{JS}(M_r)$	0.31 ± 0.07
\$(deg.)	62 ± 12
χ^2/dof	1.1
\mathbf{M}_{0}	1.49 ± 0.02
c ₀	0 ± 50
c ₁	960 ± 80
β	0.5 ± 0.3
α	1.8 ± 0.2

DM2 Data

Indications for a dip at 1.9 GeV/c² threshold came also from DM2 data that showed a narrow structure at M~ 1.90 GeV/c².

- The statistical significance of $e^+ e^- \rightarrow 3\pi^+ 3\pi^{--}$ is poor.
- The other plot shows the yield of ≥ 3 charged particles plus ≥ 2 photons or ≥ 5 charged particles.
- The detection efficiency for π^0 reconstruction was poor and additional hypothesis are needed to disentangle the various channels contributing to this plot, even if it is likely that $e^+ e^- \rightarrow 2\pi^+ 2\pi^- 2\pi^0$ is the main contribution.

(DM2 unpublished) $e^+ e^- \rightarrow 3\pi^+ 3\pi^-$

 $e^+ e^- \rightarrow 4 \pi^{\pm} 2\pi^0$, $3\pi^+ 3\pi^-$, $\geq 6\pi$

Other possible structures in diffractive photoproduction by E687 ?

E687 data suggest also other structures in $2\pi^+2\pi^-$ data when plotting the residual (fit-data) distributions.

These structures are absent in the $\pi^+\pi^-$ data.

E687 $\pi^+\pi^-$ diffractive photoproduction

Conclusions

- The diffractive photoproduction of $3\pi^+ 3\pi^-$ final states has been measured by E687.
- Evidence has been found for a new

structure at:

(preliminary) $M=1.911 \pm 0.004 \text{ GeV}$ $\Gamma = 29 \pm 11 \text{ MeV}$

The possible presence of other structures in $2\pi^+2\pi^-$ data should be further investigated.