

PEP–N simulation and multihadron detection

M. Negrini

University of Ferrara – INFN

e⁺e⁻ physics at intermediate energies workshop SLAC – April 30 – May 2, 2001

Outline

- Detector review
- Features of multihadron channels
- Detector acceptance for multihadrons
- Efficiency for R measurement

PEP-N Detector

Top view

Side view

Magnet

- Poles diameter = 120 cm
- Distance between poles = 120 cm
- Space between yokes = 240 cm
- B field = 0.3 T (vertical direction)

Calorimeters

1 mm Pb layer + 1 mm scintillating fibers modules

• FORWARD + BARREL:

Thickness = 25 cm (~15 rad. len.) Efficiency ~99% (E>20 MeV) Energy resolution = 5%/sqrt(E) • POLES + REAR:

> Thickness = 10 cm (~6 rad. Len.) Efficiency >95% (E>20 MeV), ~98% (E>40 MeV) Energy resolution = 23%

TPC

Dimensions: 100cm x 100cm x 90cm TPC centered between the magnet poles to have uniform B field.

Interaction point located 25cm upstream with respect to the center of the magnet.

Transv. P (GeV/c)	22 points	22 points	14 points	6 points
	(forward track)	* 1 point at 120 cm		(backward track)
0.1			1.0%	9%
0.2	0.7%	0.3%	2.0%	17%
0.4	1.4%	0.7%	4.1%	
0.6	2.0%	1.0%	6.1%	
0.8	2.7%	1.4%	8.1%	
1.0	3.3%	1.7%		
1.2	4.0%	2.1%		
1.4	4.6%	2.4%		
1.6	5.3%	2.8%		

Table of $\Delta p/p$ for different number of hit layers (spatial resolution= 200 μ m) :

Aerogel

- Separation between K and π in momentum range from 0.6 to 1.5 GeV/c
- Probability for misidentification of K: ~5%
- Probability for misidentification of π : ~0.05%

M.Yu.Barnyakov et al., Nucl.Instrum.Meth.A453:326–330,2000

Geometrical acceptance for isotropic distribution

Geometrical acceptance ~98% for θ >100mrad (beam pipe at the end of the TPC)

Angular distribution in laboratory frame.

Multihadron reaction contribution

Final state	1.5 GeV	2.0 GeV	lreac
π+ π-	3%		1
π+ π+ π0	4%	1.5%	2
$\pi + \pi - 2\pi 0$	40%	21.5%	3
2π+2π-	36%	16%	4
$2\pi + 2\pi - \pi 0$	2%	1%	5
$\pi + \pi - 3\pi 0$	1%	0.5%	6
$2\pi + 2\pi - 2\pi 0$	6%	24%	7
$3\pi + 3\pi -$	1%	5%	8
$\pi + \pi - 4\pi 0$	2%	8%	9
K+ K-	4%	1.5%	10
K+ K- π0	1%	3%	11
Κ+ Κ- π+ π-		8%	12
Κ+ Κ- π0 π0		4%	13
Ks Kl		0.5%	14
Ks Kl π+ π–		4%	15
Ks Kl π0 π0		1.5%	16

lreac = reaction code in the simulation

$2\pi^+ 2\pi^- 2\pi^0$ simulation

Polar angle distribution for charged π and γ for CM energy of 2.0 GeV, 2.5 GeV and 3.0 GeV.

$2\pi^+ 2\pi^- 2\pi^{\vee}$ simulation

Momentum (π) and energy (γ) distribution. CM energy = 2.0 GeV, 2.5 GeV, 3.0 GeV

$2\pi^+ 2\pi^- 2\pi^{\nu}$ simulation

Scatter plot of momentum (π) and energy (γ) distribution vs θ . CM energy = 2.0 GeV, 2.5 GeV, 3.0 GeV

$2\pi^+ 2\pi^- 2\pi^{\upsilon}$ simulation

Angular distribution (θ vs ϕ) of γ into the calorimeters for different values of CM energy.

Forward CAL Barrel CAL Pole CAL

CM energy	Not detected	FCAL	BCAL	PCAL	RCAL
1.5 GeV	17.5%	42.2%	9.3%	30.5%	0.5%
2.0 GeV	12.6%	35.4%	13.6%	37.9%	0.5%
2.5 GeV	9.4%	31.2%	14.1%	44.5%	0.8%
3.0 GeV	7.8%	25.8%	17.8%	47.4%	1.2%

TPC resolution

- ~70% of the tracks have a number of points in the TPC between 20 and 30.
- Typical momentum resolution for those tracks between 1% and 5%.

TPC resolution parametrization:

$$\frac{dp}{p} = \frac{66.2 p_T}{N_{point}^{2.46}}$$

Detection of exclusive channels

Particle selection:

- charged π , K detected if seen in 5 or more TPC pad layers
- K identified in aerogel or with dE/dx
- γ detected with cut at 20MeV and calorimeter efficiency

Acceptances for detection of the most important exclusive final states:

Channel	1.5 GeV	2.0 GeV	2.5 GeV	3.0 GeV
π^+ $\pi^- 2\pi^0$ (all detected)	42.7%	56.3%	64.2%	
$\pi^{+} \pi^{-} 2\pi^{0}$ (1 part. lost)	90.4%	94.1%	95.1%	
$2\pi^+ 2\pi^- 2\pi^0$ (all detected)		52.0%	56.6%	55.3%
$2\pi^+ 2\pi^- 2\pi^0$ (1 part. lost)		82.8%	80.6%	79.9%
$\pi^+ \pi^- K^+ K^-$ (all detected)		82.0%	73.0%	63.4%
$\pi^{+} \pi^{-} K^{+} K^{-}$ (1 part. lost)		90.9%	82.3%	72.0%

Kesonance detection

Example of reconstruction of ω invariant mass from $\omega \pi^0$ events on $\pi^+ \pi^- 2\pi^0$ background.

Cut on invariant mass between 0.70 GeV and 0.87 GeV 90.0% efficient with ~20% background.

π° reconstruction

Example of π^0 reconstruction in calorimeter:

Both γ in FCAL or BCAL One γ in FCAL or BCAL Both γ in PCAL

Detection efficiency on K

Multihadron sample built according with the proportions given on the previous table.

Cuts:

• $n_{\pi} \ge 3$ (π detected if hits 5 or more TPC layers)

or

• $n_{\pi} \ge 2$ and $n_{\gamma} \ge 1$ (γ detected with cut at 20 MeV)

or

•
$$n_{\pi} \ge 1$$
 and $n_{\pi_0} \ge 1$

or

• $n_{K} \ge 1$ (K detected in aerogel or if hits 5 or more TPC layers)

or

• $n_{\pi} \ge 1$ and $n_{Ks} \ge 1$ (energy deposition in calorimeters from Ks)

Detection efficiency on K

Ecm (GeV)	Efficiency
1.5	95.6%
2.0	96.3%
2.5	96.3%

- Very high efficiency even with the basic cuts applied. Losses, mostly due to channels:
- $\pi^+ \pi^-$
- $\mathbf{K}_{s} \mathbf{K}_{l} \mathbf{X}$

can be recovered with hadron calorimeter and special trigger to reach efficiency >98% (not simulated).

Exclusive detection efficiency

Final state	Fraction at 2.0 GeV	All particles detected	One particle not detected
π+π-			
$\pi + \pi + \pi 0$	1.5%	76.5%	98.8%
$\pi + \pi - 2\pi 0$	21.5%	56.3%	94.1%
2π+2π-	16%	89.4%	99.8%
$2\pi + 2\pi - \pi 0$	1%	68.5%	97.9%
π + π - 3π 0	0.5%	44.3%	86.9%
$2\pi + 2\pi - 2\pi 0$	24%	52.0%	82.8%
3π+3π-	5%	82.5%	99.1%
π + π - 4π 0	8%	30.2%	72.0%
K+ K-	1.5%	29.6%	29.7%
K+ K- π0	3%	54.1%	72.3%
K+ K- π+ π-	8%	82.0%	90.9%
$K+K-\pi0\pi0$	4%	54.1%	85.9%
Ks Kl	0.5%		
Ks Kl π+ π–	4%		
Ks Kl π0 π0	1.5%		

NOTE: For channel with charged K, at least one K is required to be identified in aerogel or with dE/dx