R Measurements at High Q^2

F. A. Harris University of Hawaii

April 30, 2001

Outline

- 1. Introduction
- 2. Previous Results
- 3. Recent Results
 - BES R Measurement
 - CLEO Measurement
- 4. Current Status
- 5. Future?

Introduction

$$R(s) = \frac{\sigma_{tot}(e^+e^- \to hadrons)}{\sigma_{tot}(e^+e^- \to \mu^+\mu^-)}$$

Improved R values are extremely important:

• Uncertainties in R limit the precision of α (m_Z^2) .

The error on $\alpha(m_Z^2)$ is a limiting element in tests of the Standard Model.

• The Higgs mass determined from radiative corrections in the standard model is very sensitive to the uncertainty in $\alpha(M_Z^2)$.

SM fit to m_t and m_H with $\alpha(M_Z^2)$ varying by $\pm \sigma$.

- B. Pietrzyk and H. Burkhard (1997).
- For the interpretation of $a_{\mu} = (g 2)/2$. Most of the theoretical uncertainty due to R.

H. Burkhardt and B. Pietrzyk, *Phys. Lett.* B356, 398 (1995).

Previous Measurements

PDG2000 - Selected measurements.

Systematic normalization error (5 - 20 %) not included.

Concentrate on $m_{J/\psi} < E_{\rm cm} < 12 \text{ GeV}$

- PQCD can be used at high energies. (curves: M. Dine and J. Sapirstein, Phys. Rev. Lett. **43**, 668 (1979).)
- Theory driven approaches go much lower in energy.

Collaboration	Reference
AMY	T. Mori et al., Phys. Lett. B218, 499 (1989)
CELLO	H.J. Behrend et al., Phys. Lett. 144B, 297 (1984)
	H.J. Behrend et al., Phys. Lett. 183B, 400 (1987)
CLEO	R. Giles et al., Phys. Rev. D29, 1285 (1984)
	D. Besson et al., Phys. Rev. Lett. 54, 381 (1985)
CUSB	E. Rice et al., Phys. Rev. Lett. 48, 906 (1982)
CRYSTAL	A. Osterheld et al., SLAC PUB 4160 (1986)
BALL	C. Edwards et al., SLAC PUB 5160 (1990)
	Z. Jakubowski et al., Z. Phys. C40, 49 (1988)
DASP	R. Brandelik et al., Phys. Lett. 76B, 361 (1978)
DASP II	Phys. Lett. 116B, 383 (1982)
DCI	G. Cosme et al., Nucl. Phys. B152, 215 (1979)
DHHM	P. Bock et al., Z. Phys. C6, 125 (1980)
$\gamma\gamma2$	C. Bacci et al., Phys. Lett. 86B, 234 (1979)
HRS	D. Bender et al., Phys. Rev. D31, 1 (1985)
JADE	W. Bartel et al., Phys. Lett. 129B, 145 (1983)
	W. Bartel et al., Phys. Lett. 160B, 337 (1985)
LENA	B. Niczyporuk et al., Z. Phys. C15, 299 (1982)
MAC	E. Fernandez et al., Phys. Rev. $D31$, 1537 (1985)
MARK J	B. Adeva et al., Phys. Rev. Lett. 50, 799 (1983)
	B. Adeva et al., Phys. Rev. D34, 681 (1986)
MARK I	J.L. Siegrist et al., Phys. Rev. D26, 969 (1982)
MARK I	P.A. Rapidis et al., Phys. Rev. Lett. 39,526 (1977)
+ Pb G. Wall	P.A. Rapidis, thesis, SLAC Report 220 (1979)
MD 1	A.E. Blinov et al., Z. Phys. C70, 31 (1996)
MEA	B. Esposito et al., Lett. Nuovo Cimento 19, 21 (1977)
PLUTO	A. Backer, thesis, DESY F3377/03 (1977)
	C. Gerke, thesis, Hamburg Univ. (1979)
	Ch. Berger et al., Phys. Lett. $81B$, 410 (1979)
	W. Lackas, thesis, DESY Pluto81/11 (1981)
TASSO	R. Brandelik et al., Phys. Lett. 113B, 499 (1982)
	M. Althoff et al., Phys. Lett. 138B, 441 (1984)
TOPAZ	I. Adachi et al., Phys. Rev. Lett. 60, 97 (1988)
VENUS	H. Yoshida et al., Phys. Lett. 198B, 570 (1987)

BES R Measurement

BES-II (Upgraded Beijing Spectrometer)

- General purpose solenoidal detector at Beijing Electron Positron Collider (BEPC).
- CM energy range from 2 to 5 GeV.
- \bullet Energy spread: 1.0 MeV
- Luminosity at J/ψ energy ~ 4×10^{30} cm⁻²s⁻¹.
- Detector Performance.

Subdetector	Performance
VC	$\sigma_{xy} \sim 100 \ \mu \mathrm{m}$
	$\sigma_{xy} \sim 200 \ \mu \mathrm{m}$
MDC	$\sigma p/p \sim 1.8\% \sqrt{1+p^2}$
	$\sigma_{dE/dx} \sim 8.4\%$
TOF	$\sigma_T \sim 180 \text{ ps}$
	$\sigma_Z \sim 3 \text{ cm}$
BSC	$\sigma E/E \sim 21\%/\sqrt{E}$
	$\sigma_Z \sim 2.5 \text{ cm}$
μ counter	$\sigma_{r\phi} \sim 3 \text{ cm}$
	$\sigma_Z \sim 9 \text{ cm}$

End view of the BES detector

Determination of R

Experimentally:

$$R = \frac{\sigma_{had}^0}{\sigma_{\mu\mu}^0} = \frac{N_{obs} - N_{bg}}{\sigma_{\mu\mu}^0 \cdot \epsilon_{had} \cdot \epsilon_{trig} \cdot (1 + \delta) \cdot L}$$
$$N_{bg} = N_{cr} + N_{bm} + N_{ll} + N_{\gamma\gamma}$$
$$\sigma_{\mu\mu}^0(s) = 4\pi \alpha^2/3s$$

Runs

- In 1998 we performed an initial measurement of R using six scan points: 2.6, 3.2, 3.4, 3.55, 4.6, and 5.0 GeV.
- In 1999, we measured 85 scan points. ∼ 1000 events/pt. Took ~5 months.

Year	Е	Pts	Single	Separated	Time Spent
	(GeV)		Beam Pts	Beam Pts	(days)
1998	2.6 - 5.0	6	1	6	40
1999	2.0 - 4.8	85	7	24	105

Event Selection

- Remove apparent Bhabhas.
- Track level cuts: require good tracks from IP. Remove cosmic rays and beam-gas.

Туре	Cuts
Time	$2 < t < t_{\rm proton} + 5\sigma_{\rm TOF}$
Space	$r_o < 2.0 { m ~cm}$
(mfit = 2)	$ z_o < 18 \text{ cm}$
Energy (BSC)	$E < 0.6 E_{\text{beam}}$
Momentum	$p < p_{\text{beam}} + 5\sigma_p$
	$ \cos \theta < 0.84$

• Event level cuts:

Remove beam-gas, two-photon, ee, $\mu\mu$, etc.

- require ≥ 2 tracks with at ≥ 1 good helix fit.
- total deposited energy > 0.28 E_{beam} .
- tracks don't all point in the same direction in z.
- for 2-prongs: tracks must NOT be backto-back and have at least 2 isolated neutral tracks.

• Systematic error: part determined by varying cuts.

Backgrounds

Cosmic rays, lepton pairs, two photon, and beam associated - subtract $\tau\tau$ and two photon.

Largest background: beam associated N_{bm}

• Determine using separated beam runs. $N_{bm} = f N_{SB}$, where

$$f = \frac{{}^{\rm J}_{col}(P \cdot I)_{col}dt}{{}^{\rm J}_{sep}(P \cdot I)_{sep}dt}$$

• For 1999 data, also use vertex distribution. Fit with Gaussian + 2nd order polynomial.

- Differences between methods range from 0.3 to 2.3 %. Included in systematic errors.
- Varied order of polynomial. Included in event selection systematic error.

Hadron Efficiency

Lund group and BES have worked to develop LUARLW:

- New generator based on Area Law. Especially important to describe low energy region (≤ 3 GeV).
- Removes high energy approximation in string approximation in JETSET.
- Final state generation is exclusive.
- Above 3.77 GeV, Eichten Model used for charmed meson production.
- Parameters especially tuned to fit the data in the BES energy region.
- Uncertainty in parameters (tuning) included in systematic error.
- Tuned both locally and globally. Difference into systematic error.
- Varied D fractions. Difference in systematic error.

- ϵ_{had} above 3 GeV are also determined using Lund model: LUND JETSET74 generator.
 - $-E_{cm} > 4$ GeV, default parameters
 - $-E_{cm} \leq 4$ GeV, tuned parameters
- Difference with LUARLW is about 1 % at most points but is up to 3 or 4 % at a few points. Included in systematic error.

$E_{cm} (\text{GeV})$	3.0	4.6	4.8
ϵ JETSET	0.6733	0.8628	0.8796
ϵ Area Law	0.6969	0.8757	0.8664
diff $(\%)$	3.5	1.5	1.5

• Overall systematic error about 3 %.

Radiative Corrections: $(1 + \delta)$

Remove high order effects from σ_{had}^{obs}

- Applied methods of:
 - Berends and Kleiss
 Nucl. Phys. B178, 141 (1981)
 - Bonneau and Martin
 Nucl. Phys. B 27, 387 (1971).
 - Kuraev and Fadin
 Sov. J. Nucl. Phys. 41, 3 (1985)
 - Osterheld *et al.* SLAC-PUB-4160, 1990. (T/E)

- all agree within 1% in continuum region; 1-3 % in resonance region.
- Use Osterheld method and include differences in systematic error.

Luminosity Measurement

Integrated luminosity:

$$L = \frac{N_{obs}}{\sigma \epsilon \epsilon_{trg}}$$

Used: $\gamma\gamma$, Bhabha, and dimu events

Results consistent

Systematic error: cut variations, background uncertainties, cross section uncertainty, and efficiency uncertainty.

Trigger Efficiency

Measured by comparing different trigger configurations in runs at J/ψ .

$$\epsilon_{\text{Bhabha}} = 99.96\%$$

 $\epsilon_{\mu\mu} = 99.33\%$
 $\epsilon_{\mu\mu} = 99.76\%$

 $\mathrm{Error} = 0.5~\%$

BES Results

- 1998 results published: J.Z. Bai *et al.*, Phys. Rev. Lett.84, 594 (1999).
- 1999 results submitted to PRL: J.Z. Bai *et* al., hep-ex/0102003

• Values at a few typical energy points.

$E_{cm}(\text{GeV})$	$N_{\rm had}$	$N_{ll} + N_{\gamma\gamma}$	$L(nb^{-1})$	$\epsilon_{\rm had}$ (%)	$1+\delta$
2.0	1155.4	19.5	47.3	49.50	1.024
3.0	2055.4	24.3	135.9	67.55	1.038
4.0	768.7	58.0	48.9	80.34	1.055
5.0	1215.3	93.6	84.4	86.79	1.113

- Systematic uncertainties are between 6 and 10 % and are about half of the previous uncertainties. Average 6.6 %.
- Systematic errors at 3.0 GeV.

Source	Error (%)
N _{had}	3.3
	2.3
$1+\delta$	1.3
ϵ_{had}	2.7
Sys.	5.0
Stat.	2.5
Total	5.6

New CLEO Measurement

R. Ammar *et al.*, CLEO Collab., Phys. Rev. D57, 1350 (1998).

Measured R at $E_{cm} = 10.52$ GeV. Just below $\Upsilon(4S)$

$$R = 3.56 \pm 0.01 \pm 0.07 \qquad (2\%)$$

Very precise - error similar to error of all previous results in this region combined.

$$\bar{R} = 3.579 \pm 0.066$$
 (1.8%)

A. E. Blinov et al., Z. Phys. C 70, 31 (1996).

Why errors much smaller than BES?

- better solid angle coverage and detection efficiency.
- better detector.
- higher luminosity: (1.521 ± 0.015) fb⁻¹
- more events: 4 M

Source	BES Error $(\%)$	CLEO Error (%)
	(3 GeV)	
N_{had}	3.3	_
Backgd./Ev. Modeling	—	0.7
L	2.3	1.0
$1 + \delta$	1.3	_
ϵ_{had}	3.0	—
$\epsilon_{had} \times (1+\delta)$	_	1.0
Sys.	5.2	1.8
Stat.	2.5	0.3
Total	5.8	2.0

With a much bigger sample, both statistical and systematic errors are reduced.

Current Status

Burkhardt and Pietrzyk have an updated analysis with CMD-2, CLEO, BES, and 3rd order QCD for E_{cm} > 12 GeV.
 (H. Burkhardt and B. Pietrzyk, accepted by

(H. Burkhardt and B. Pietrzyk, accepted by Phys. Lett. B, LAPP-EXP 2001-03 (Feb. 2001).)

 $\alpha^{-1}(M_Z^2) = 128.936 \pm 0.046$ $\Delta \alpha_{\text{had}}^{(5)} = 0.02761 \pm 0.00036$

Previously:

 $\alpha^{-1}(M_Z^2) = 127.938 \pm 0.027 \text{ (PDG2000)}$

• Experimental R-values below 5 GeV confirm QCD calculation (M. Davier and A. Hoecker, Phys. Lett. B419, 419 (1998).)

Future R Measurements?

- Need to improve 1 2 GeV cm region. Important for both a_{μ} and $\alpha(M_Z^2)$
 - KLOE
 - PEP-N
- Also 2 5 GeV.
 - BES in 2001?
 - PEP-N
 - CLEO-C
 - ISR Events at Belle and BaBar?
 T. Benninger, X.C. Lou, and W. M. Dunwoodie, "Physics with ISR EVENTS at B Factory Experiments"
- Next 5 7 GeV region.
 - CLEO-C
 - ISR Events at Belle and BaBar

What is needed to improve precision?

- High luminosity \rightarrow large sample
- Good solid angle coverage
- Excellent detector
- \bullet Radiative correction better than 1 %
- More effort on event generator (LUARLW)
- Large sample for tuning generator
- Measure exclusive channels at low energy. Need good PID

Energy reach of PEP-N?

Suggestion: Extend energy range to above $\psi(2S)$

- Above threshold for $\tau \tau$ production.
- Can study decays of η_c and χ_c states.
- Study $\psi(2S)$ hadronic decays.

Study $\rho\pi$ puzzle

• Compare J/ψ and $\psi(2S)$ decays.

World's largest sample: ~ 4 M events (BES)

Summary

- Improved R-value precision very important because of a_{μ} and $\alpha(m_Z^2)$.
- BES measurements are a major improvement.
- Many interesting possibilities for future improvements.