Measurement of the Hadronic Cross Section at KLOE using the Radiative Return

- Radiative Return at DAΦNE (ISR / FSR)
- Summary & Outlook

σ_{hadr} at DAΦNE: $e^+e^- \rightarrow \pi^+\pi^-\gamma$

DA Φ **NE**: Electron - Positron Collider on ϕ - mass $\sqrt{s} = 1.02 \ GeV$

Energy - Scan at short hand not possible due to special Interaction - Region

ISR

$$e^+ \ e^- \rightarrow \gamma + Hadrons$$
 ($2m_\pi$) $^2 < Q^2_{-Hadrons} <$ (m_ϕ) 2

 $d\sigma (e^+e^- \rightarrow hadrons + \gamma) / dQ^2 = \sigma (e^+e^- \rightarrow hadrons, Q^2) H (Q^2, cos\theta_0)$

Restricted to $Q^2 < (M_{\phi})^2 \rho$ -Resonance

Requires good suppression of FSR

Requires precise calculations of ISR

→ **EVA** MC Generator (Kühn et al.)

61% of hadronic contribution a_{μ} comes from ρ mass region

Data comes as by-product of KLOE standard program

Errors of beam energy and luminosity the same

for each point of Q²

ISR / FSR (EVA - MC *)

FSR is Background for our Process $e^+e^-\!\!\to\pi^+\pi^-\gamma$

* S. Binner, J.H. Kühn, K. Melnikov Phys. Lett. B 459 (1999)

ISR is peaked at small angles of the photon and is enhanced by the ρ -resonance FSR follows pion angular distribution; enhanced at small E_{γ} and larger photon angles

\Rightarrow Cut in \mathbf{E}_{γ} - θ_{γ} -plane:

- E_γ>20 MeV
- $5^{\circ} < \theta_{\gamma} < 21^{\circ}$
- $55^{\circ} < \theta_{\pi} < 125^{\circ}$
- more kinematical cuts

ISR/(ISR+FSR)>99%

Select events with θ_{γ} as low as possible

 \Rightarrow $\sigma_{ISR} \approx 3.5 \text{ nb}$

ISR / FSR

We can test the model of FSR in MC by looking at the charge asymmetry of the pion pairs:

Comparison for Asymmetry betw.

Data and MC looks good

EVA -MC seems to describe FSR on the some % - level

$\varphi \longrightarrow f_0(980) \gamma \longrightarrow \pi^+ \pi^- \gamma$

The direct decay $\phi \rightarrow \pi^+ \pi^- \gamma$ gives an additional background which has to be subtracted to the 1% - level

Problem: Poorly known parameters of the

f₀-Meson through which the decay

proceeds: $\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$

constr./destr. Interference with FSR?

Information from $\phi \rightarrow f_0 \gamma \rightarrow \pi^0 \pi^0 \gamma$

Study decay experimentally at large photon angle!

 $60^{\circ} < \Theta_{\gamma} < 120^{\circ}$ complementary analysis to hadronic cross section (ISR)

Experimental values:

$$BR(\phi \to \pi^{+} \pi^{-} \gamma)_{Exp} = (0.41 \pm 0.13) \cdot 10^{-4} \\ BR(\phi \to f_{0} \gamma)_{Exp} = (1.93 \pm 0.68) \cdot 10^{-4} \\ BR(\phi \to f_{0} \gamma)_{Exp} < 1.6 \cdot 10^{-4} @95\% \text{ C.L.}$$
 } KLOE coll 1999 data

The DADNE Complex

Design Philosophy:

Moderate Single
Bunch Luminosity

★ Large Number
of Bunches

5·10³⁰ (VEPP-2M)

★ 120 Bunches
2.7 ns spacing

2 independent beam lines for e⁻, e⁺
 2 interaction points: KLOE & DEAR/FINUDA

BR's for main ϕ decays $K^{+}K^{-}$ 49.1% $K_{S}K_{L}$ 34.1% $\rho\pi + \pi^{+}\pi^{-}\pi^{0}$ 15.5%

 $p_{K^{+-}} = 127 MeV/c$ $p_{K_{L,S}} = 110 MeV/c$

DAPNE & KLOE History

The KLOE Detector

 \lnot **Design:** Measurement of Events, like : $K_L \to \pi^+\pi^ K_S \to \pi^0\pi^0$

$e^+e^-\! o \pi^+\pi^-\gamma$ Event Selection

 $e^+e^- \rightarrow \pi^+\pi^-\gamma$ Events with polar angle Θ_{γ} of photon as small as possible:

 $\Theta > 21^{\circ}$: Electromagnetic Calorimeter

 $\Theta > 5^{\circ}$: Quadrupole Instrumentation (only tag ?!)

Efficient Photon Detection not possible at very small angles where ISR is enhanced

Select $\pi\pi\gamma$ by using only information from the high resolution drift chamber: calculate Θ_{γ} from missing momentum no explicit photon detection !

- 1 charged vertex close to I.R. with 2 tracks
- Likelihood Method for Bhabha Suppression
- cut on kinematical variables (track mass)

Bhabha Separation

To reduce Bhabha contamination, a Likelihood-Method has been developed based on:

- TOF of charged clusters in EmC
- Shape and energy deposition of the "charged" cluster

Two control samples have been taken from data in order to find suitable variables to separate electrons and pions:

 $-\pi^{+}\pi^{-}\pi^{\circ} \text{ are used for Pion information}$ $-e^{+}e^{-}\gamma \text{ are used for Electron information}$ $\mathbf{aL}^{e},\pi^{-} = \prod_{i} \mathbf{f}_{i}^{e},\pi(\mathbf{x}_{i}) \quad \mathbf{abs. Likelihood}$ $\mathbf{rL} = \mathbf{aL}^{\pi}/\mathbf{aL}^{e} \quad \mathbf{rel. Likelihood}$

First Comparison

- After the application of the Likelihood -Method, the cut | mass_{trk}-139.5|<10 MeV is applied
- We compare the distributions with MC for Large Photon Angle & Small Photon Angle ("Online") and normalize both distributions to the same number of events around ρ peak

the background contributions have to be taken into account the various efficiencies have to be checked & calculated using data as function of Q²

Background from $\phi \! \to \pi^{\scriptscriptstyle +} \, \pi^{\scriptscriptstyle -} \, \pi^{\scriptscriptstyle 0}$

- $\phi \to \pi^+ \pi^- \pi^0$ has a 15.5% BR. and is separated during the selection phase by applying a cut in the 2dim. Plane $Mass_{track}$ vs. Q^2
- \Box Look at the events which fall in $\pi^+ \pi^- \gamma$ -Se= lection - Interval (as function of Q2)

280

 $\pi^+ \pi^- \pi^0$

Hadronic Cross Section @ KLOE

Numbers in Blue: Data Numbers in Green: MC

Event Selection

- Vertex efficiency
- likelihood method
- •other kinematic cuts
- Bhabha Events (sel. indep. from DC) $\approx 98\%$ loss at small Q^2
- constructed from data (see before) \rightarrow \approx 98%, flat in Q^2
- taken from MC

Acceptance

 \Box

Still taken from MC, losses at small Q² due to kinematics

Differential Cross Section

$$e^+e^-\! o
ho^-\gamma\! o\pi^+\pi^-\gamma$$

Data is not corrected for smearing (Tracking Resolution effect)!

Acceptance Cuts:

$$\begin{array}{l} 5^{\circ} < \Theta_{\gamma} < 21^{\circ} \\ E_{\gamma} > 10 \text{ MeV} \\ 55^{\circ} < \Theta_{\pi} < 125^{\circ} \\ p_{T} > 200 \text{ MeV} \end{array}$$

Luminosity Measurement

DA⊕NE does not have Luminosity Monitors at small angles

use KLOE itself for measurement : Large Angle Bhabhas (σ_{eff} = 425nb)

- $55^{\circ} < \theta_{+} < 125^{\circ}$
- Acoll. $< 9^{\circ}$
- $E_{+} \ge 400 \text{ MeV}$

Theoret. Generators with rad. corrections

Berends/Drago/Venanzoni BABAYAGA*

Luminosity- Measurement on Percent Level agreement with independent $\gamma\gamma$ -Counter < 1%

Summary & Outlook

- Preliminary results for the measurement of the **differential cross section** $e^+e^- \rightarrow \pi^+\pi^-\gamma$ with the KLOE detector have been presented, where the Photon is coming from ISR
- Results are in **good agreement** with the MC prediction EVA (Kühn et.al.); **Efficiencies**, **Systematics** and **Background** (evaluated from data) are under control;
- What will bring the future?

$$\frac{d\sigma}{dQ^2} = \frac{dN^{obs} - dN^{Bkg}}{dQ^2} \cdot \frac{1}{\epsilon_{Eff} \epsilon_{Syst} L}$$

Efficiencies: already few % now , independent from MC

Background: very small Background from Bhabhas, μμγ

Systematics: Effect from $\delta \sqrt{s}$, δQ^2 , $\delta \Theta_{\pi}$, $\delta \Theta_{\gamma}$

has been studied with MC, more emphasis

needed to look at data, esp. $\delta\Theta_{\gamma}$

Luminosity: Precision already on percent level (<2%)

more test are going on

Statistics: < 1% level for integrated Lumi. of 200pb⁻¹

NLO Generator from Kühn et.al (Θ_{γ} =0) Theory:

Extract the hadronic cross section $e^+e^- \rightarrow \rho \rightarrow \pi^+\pi^-$ (compare with Novosibirsk results)