## Measurement of the

## Hadronic Cross Section at Kloe

 using the Radiative Return

- Radiative Return at DAФNE (ISR / FSR)
- Measurement of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \gamma$ with the KLOE detector
- Summary \& Outlook


## $\sigma_{\text {hadr }}$ at DАФNE: $e^{+} e^{-} \rightarrow \pi^{+} \pi \gamma$

DAФNE: Electron - Positron Collider on $\phi$ - mass $\sqrt{ } \mathrm{s}=1.02 \mathrm{GeV}$ Energy - Scan at short hand not possible due to special Interaction - Region

$\leftrightharpoons$ This measurement is a complementary approach to the standard energy scan (e.g. Novosibirsk)

Restricted to $Q^{2}<\left(M_{\phi}\right)^{2} \quad \rho$-Resonance
Requires good suppression of FSR
Requires precise calculations of ISR
$\rightarrow$ EVA MC Generator (Kühn et al.)
$61 \%$ of hadronic contribution $\mathrm{a}_{\mu}$ comes from $\rho$ mass region Data comes as by-product of KLOE standard program Errors of beam energy and luminosity the same for each point of $Q^{2}$

$$
\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \rho \gamma \rightarrow \pi^{+} \pi^{-} \gamma
$$

## ISR / FSR (EVA - MC *)

$\Rightarrow$ FSR is Background for our Process $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \pi^{+} \pi^{-} \gamma$

> * S. Binner, J.H. Kühn, K. Melnikov
> Phys. Lett. B 459 (1999)

ISR is peaked at small angles of the photon
and is enhanced by the $\rho$-resonance
FSR follows pion angular distribution; enhanced at small $\mathrm{E}_{\gamma}$ and larger photon angles

$\Rightarrow$ Cut in $\mathrm{E}_{\gamma}-\theta_{\gamma}-$ plane:

- $\mathrm{E}_{\gamma}>20 \mathrm{MeV}$
- $5^{\circ}<\theta_{\gamma}<21^{\circ}$
- $55^{\circ}<\theta_{\pi}<125^{\circ}$
- more kinematical cuts

ISR/(ISR+FSR)>99\%

Select events with $\theta_{\gamma}$ as low as possible
$\Rightarrow \sigma_{\mathrm{ISR}} \approx 3.5 \mathrm{nb}$

## ISR / FSR


$\longmapsto$
We can test the model of FSR in MC by looking at the charge asymmetry of the pion pairs:

Comparison for Asymmetry betw. Data and MC looks good

EVA -MC seems to describe FSR on the some \% - level

## $\phi \rightarrow f_{0}(980) \gamma \rightarrow \pi^{+} \pi{ }^{-} \gamma$

$\Rightarrow$ The direct decay $\phi \rightarrow \pi^{+} \pi^{-} \gamma$ gives an additional background which has to be subtracted to the $1 \%$ - level

```
Problem: Poorly known parameters of the
    fo
    proceeds: }\phi->\mp@subsup{f}{0}{}\gamma->\mp@subsup{\pi}{}{+}\pi-
constr./destr. Interference with FSR ?
Information from \phi}->\mp@subsup{\textrm{f}}{0}{}\gamma->\mp@subsup{\pi}{}{0}\mp@subsup{\pi}{}{0}
```

$\leftrightharpoons$ Study decay experimentally at large photon angle!

```
\(\Rightarrow \quad 60^{\circ}<\Theta_{\gamma}<120^{\circ}\)
    complementary analysis
    to hadronic cross section (ISR)
```

Experimental values:

```
BR}(\phi->\mp@subsup{\pi}{}{+}\pi\mp@subsup{\pi}{}{-}\gamma\mp@subsup{)}{\mathrm{ Exp }}{}=(0.41\pm0.13)\bullet10-
BR}(\phi->\mp@subsup{\textrm{f}}{0}{}\gamma\mp@subsup{)}{\operatorname{Exp}}{}=(1.93\pm0.68)\bullet1\mp@subsup{0}{}{-4}\quad(->\mathrm{ destr. Interference?)}}\mathrm{ CMD2 coll
BR}(\phi->\mp@subsup{\textrm{f}}{0}{}\gamma\mp@subsup{)}{\operatorname{Exp}}{<}<1.6\cdot1\mp@subsup{0}{}{-4}@95% C.L
```

\} KLOE coll 1999 data

## The DAథNE Complex

$\Rightarrow$ Design Philosophy:
Moderate Single
Bunch Luminosity
$5 \cdot 10^{30}$ (VEPP-2M)

Large Number of Bunches

* 120 Bunches 2.7 ns spacing
$\Rightarrow 2$ independent beam lines for $e^{-}, e^{+}$
2 interaction points: KLOE \& DEAR/FINUDA

$\Rightarrow$| BR's for main $\phi$ decays |  |  |  |
| :---: | :---: | :---: | :---: |
| $K^{+} K^{-}$ | $49.1 \%$ |  |  |
| $K_{S} K_{L}$ | $34.1 \%$ |  |  |
| $\rho \pi+\pi^{+} \pi^{-} \pi^{0}$ | $15.5 \%$ |  |  |
| $\mathrm{p}_{\mathrm{K}^{++}}$ |  |  | $=127 \mathrm{MeV} / \mathrm{c}$ |
| $\mathrm{p}_{\mathrm{L}_{\mathrm{L}, \mathrm{S}}}$ | $=110 \mathrm{MeV} / \mathrm{c}$ |  |  |



## Datne \& Kloe History



Hadronic Cross Section @ KLOE

## The KLOE Detector

$\Rightarrow$ Design: Measurement of Events, like : $K_{L} \rightarrow \pi^{+} \pi^{-} \quad K_{S} \rightarrow \pi^{0} \pi^{0}$
Superconducting Coil $B=0.6 T$


## $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \pi^{+} \pi^{-} \gamma$ Event Selection

$\Rightarrow e^{+} e^{-} \rightarrow \pi^{+} \pi \gamma \quad$ Events with polar angle $\Theta_{\gamma}$ of photon as small as possible:
$\Theta>21^{\circ}$ : Electromagnetic Calorimeter
$\Theta>5^{\circ}$ : Quadrupole Instrumentation (only tag ?!)
Efficient Photon Detection not possible at very small angles where ISR is enhanced



Select $\pi \pi \gamma$ by using only information from the high resolution drift chamber: calculate $\Theta_{\gamma}$ from missing momentum no explicit photon detection!

## Bhabha Separation

To reduce Bhabha contamination, a Likelihood-Method has been developed based on:

- TOF of charged clusters in EmC
- Shape and energy deposition of the "charged" cluster


Two control samples have been taken from data in order to find suitable variables to separate electrons and pions:
$-\pi^{+} \pi^{-} \pi^{0}$ are used for Pion information
$-e^{+} e^{-} \gamma$ are used for Electron information
$\mathbf{a L}^{e, \pi}=\prod_{\mathbf{i}}^{e}{ }^{e, \pi}\left(\mathbf{x}_{\mathbf{i}}\right) \quad$ abs. Likelihood
$\mathrm{rL}=\mathrm{aL}^{\pi} / \mathrm{aL}^{e} \quad$ rel. Likelihood

## First Comparison

$\Rightarrow$ After the application of the Likelihood -Method, the cut Imass $_{\text {trk }}-139.5 \mid<10 \mathrm{MeV}$ is applied
$\leftrightarrows$ We compare the distributions with MC for Large Photon Angle \& Small Photon Angle ("Online") and normalize both distributions to the same number of events around $\rho$ - peak

the background contributions have to be taken into account
the various efficiencies have to be checked \& calculated using data as function of $Q^{2}$

## Background from $\phi \rightarrow \pi^{+} \pi \pi^{0}$

$\Rightarrow \phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$ has a $15.5 \%$ BR. and is separated during the selection phase by applying a cut in the 2dim. Plane Mass ${ }_{\text {track }}$ vs. Q $^{2}$
$\Rightarrow$ Look at the events which fall in $\pi^{+} \pi^{-} \gamma-\mathrm{Se}=$ lection - Interval (as function of $\mathrm{Q}^{2}$ )




Hadronic Cross Section @ KLOE

## Selection Efficiencies

## Trigger

- "HW -Cosmic Veto"* at high $\mathrm{Q}^{2}$
loss in efficiency for data $\mathrm{Q}^{2}>0.7 \mathrm{GeV}^{2}$
$\Rightarrow$ • downscaled Anti-Veto Events
- parametrize probab. for single pions as Function of $\mathrm{p}_{\pi}$ and $\Theta_{\pi}$
- standard Trigger - Efficiency



## Reconstruction - Filter



- Filter for machine background + cosmics
$\square$ downscaled Anti-Filter Events $\approx 98 \%$, flat in $\mathrm{Q}^{2}$


## Event Selection

- Vertex efficiency • Bhabha Events (sel. indep. from DC) $\approx \mathbf{9 8 \%}$ loss at small $Q^{2}$
$\cdot$ likelihood method $\quad>\cdot$ constructed from data (see before) $\longrightarrow \approx \mathbf{9 8 \%}$, flat in $\mathrm{Q}^{2}$
- other kinematic cuts
- taken from MC

Acceptance $\quad \square$ Still taken from MC, losses at small $\mathrm{Q}^{2}$ due to kinematics

## Differential Cross Section

$\Rightarrow 16.1 \mathrm{pb}^{-1}$ of Nov./Dec. 2000 Data have been analyzed
$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \rho \gamma \rightarrow \pi^{+} \pi^{-} \gamma$ (1/2 of full data set $1999+2000$ )


## Luminosity Measurement

DAФNE does not have Luminosity Monitors at small angles
$\Rightarrow$ use KLOE itself for measurement :
Large Angle Bhabhas ( $\sigma_{\text {eff }}=425 n b$ )

- $55^{\circ}<\theta_{+-}<125^{\circ}$
- Acoll. < $9^{\circ}$
- $\mathrm{E}_{+} \geq 400 \mathrm{MeV}$

$$
\begin{aligned}
& \quad \int L d t=\frac{N_{L A B}(\Theta) \cdot\left(1-\delta_{\text {Background }}\right)}{\sigma_{L A B}^{M C}(E)} \\
& \text { LAB - Candidates } \\
& \text { (Systemat., Accept.) }
\end{aligned}
$$

Theoret. Generators
with rad. corrections
Berends/Drago/Venanzoni
BABAYAGA*


$\Rightarrow$ Luminosity- Measurement on Percent Level agreement with independent $\gamma \gamma$-Counter < $1 \%$

## Summary \& Outlook

$\Rightarrow$ Preliminary results for the measurement of the differential cross section $e^{+} e^{-} \rightarrow \pi^{+} \pi \gamma$ with the KLOE detector have been presented, where the Photon is coming from ISR
$\Rightarrow$ Results are in good agreement with the MC prediction EVA (Kühn et.al.);
Efficiencies , Systematics and Background (evaluated from data) are under control ;
$\leftrightharpoons$ What will bring the future ?

$$
\frac{d \sigma}{d Q^{2}}=\frac{d N^{o b s}-d N^{B k g}}{d Q^{2}} \cdot \frac{1}{\varepsilon_{\mathrm{Eff}} \varepsilon_{\mathrm{Syst}} L}
$$

Efficiencies: already few \% now, independent from MC
Background: very small Background from Bhabhas, $\mu \mu \gamma$
Systematics: Effect from $\delta \sqrt{ } \mathrm{s}, \delta Q^{2}, \delta \Theta_{\pi}, \delta \Theta_{\gamma}$
has been studied with MC, more emphasis needed to look at data, esp. $\delta \Theta_{\gamma}$
Luminosity: Precision already on percent level (<2\%) more test are going on
Statistics: < $1 \%$ level for integrated Lumi. of $200 \mathrm{pb}^{-1}$
( Theory: NLO Generator from Kühn et.al ( $\left.\Theta_{\gamma}=0\right)$ )

$\Rightarrow$ Extract the hadronic cross section $e^{+} e^{-} \rightarrow \rho \rightarrow \pi^{+} \pi^{-}$(compare with Novosibirsk results)

